Skip to content
Home » Spark 3.0: Solving the “dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z” error

Spark 3.0: Solving the “dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z” error

In the past couple of weeks, I’ve been working on a project which users Spark pools in Azure Synapse. However, this appears to be a general Spark issue. I was unable to write to delta lake using Spark because I received the following error.

You may get a different result due to the upgrading of Spark 3.0: reading dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z from Parquet files can be ambiguous, as the files may be written by Spark 2.x or legacy versions of Hive, which uses a legacy hybrid calendar that is different from Spark 3.0+’s Proleptic Gregorian calendar.
See more details in SPARK-31404. You can set spark.sql.legacy.parquet.datetimeRebaseModeInRead to ‘LEGACY’ to rebase the datetime values w.r.t. the calendar difference during reading. Or set spark.sql.legacy.parquet.datetimeRebaseModeInRead to ‘CORRECTED’ to read the datetime values as it is.

First of all, what causes this? Apparently Spark 3.0 has issues reading very old dates (before the year 1582) and timestamps (before 1900). This is due to Spark 3.0 using the Proleptic Gregorian calendar instead of the hybrid Gregorian/Julian calendar. To solve this, there are two things you should do.

How to fix reading data

To be able to read the data into memory, you should update your spark configuration as follows.

spark.conf.set('spark.sql.legacy.parquet.datetimeRebaseModeInRead', 'CORRECTED')

If you’re adjusting the setting in Synapse, you should set this specific setting in the Spark configuration file, and reload your Spark pool.

How to fix writing data

It’s not because you can now read the data into memory, that you’ll be able to write the data. For example, I couldn’t write the data to delta lake, as long as it contained these erroneous dates.

To fix this, you can run the following Spark script. It will loop over all date columns and changes weird date values to ‘1900-01-01’.

    date_cols = [item[0] for item in sdf.dtypes if item[1].startswith('date')]
    for date_col in date_cols:
        sdf = sdf
					F.col(date_col) <= '1900-01-01', 
					F.to_date(F.lit('1900-01-01'), 'yyyy-MM-dd'))

Good luck!

Say thanks, ask questions or give feedback

Technologies get updated, syntax changes and honestly… I make mistakes too. If something is incorrect, incomplete or doesn’t work, let me know in the comments below and help thousands of visitors.

17 thoughts on “Spark 3.0: Solving the “dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z” error”

  1. Hello tһere! I know tһis is kind of off topic but I was ᴡondering if you knew
    where I c᧐uld get a captcһa plugin for my commernt form?
    I’m using the samе bl᧐g platform as yours and I’m having troublе finding
    one? Thanks a lot!

    Stop by my homepage – Mpo3333

  2. Hi there, i reaԁ your blog occasionaⅼly and i own a similar one
    and i was just cuгious if you get a lot of spam comments?
    If so how dօ yоu preᴠent it, ɑny plսgin or anythinhg you can suggest?
    I get so much lately it’s driving me maԀ so any hеlp is veгy much appreciated.

    Take a lߋok at mʏ homepage: togelonline88

  3. Attractive section of content. I just stumbled upon your site and
    in accession capital to assert that I acquire in fact
    enjoyed account your blog posts. Anyway I’ll be subscribing to
    your feeds and even I achievement you access consistently

  4. Hi! I know this is somewhat off-topic but I needed to ask.
    Does building a well-established website such as yours require a lot of work?
    I am completely new to writing a blog however I do write in my diary every day.
    I’d like to start a blog so I can easily share my personal experience and feelings online.
    Please let me know if you have any recommendations or tips for brand new aspiring bloggers.


  5. I like what you guys tend to be up too. This
    kind of clever work and exposure! Keep up the wonderful works guys I’ve incorporated you guys to blogroll.

Leave a Reply

Your email address will not be published. Required fields are marked *